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Abstract

Graphics cards for personal computers have recently undergone
a radical transformation from fixed-function graphics pipelines to
multi-processor, programmable architectures. Multi-processor ar-
chitectures are clearly advantageous for graphics for the simple
reason that graphics computations are naturally concurrent, map-
ping well to stateless stream processing. They therefore parallelize
easily and need no random access to memory with its problematic
latencies.

This paper presentsVertigo, a purely functional, Haskell-embedded
language for 3D graphics and an optimizing compiler that gener-
ates graphics processor code. The language integrates procedural
surface modeling, shading, and texture generation, and the com-
piler exploits the unusual processor architecture. The shading sub-
language is based on a simple and precise semantic model, in con-
trast to previous shading languages. Geometry and textures are also
defined via a very simple denotational semantics. The formal se-
mantics yields not only programs that are easy to understand and
reason about, but also very efficient implementation, thanks to a
compiler based on partial evaluation and symbolic optimization,
much in the style of Pan [2].

Haskell’s overloading facility is extremely useful throughout Ver-
tigo. For instance, math operators are used not just for floating
point numbers, but also expressions (for differentiation and com-
pilation), tuples, and functions. Typically, these overloadings cas-
cade, as in the case of surfaces, which may be combined via math
operators, though they are really functions over tuples of expres-
sions on floating point numbers. Shaders may be composed with
the same notational convenience. Functional dependencies are ex-
ploited for vector spaces, cross products, and derivatives.
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1 Introduction

There has recently been a revolution in processor architecture
for personal computers. High-performance, multi-processor, data-
streaming computers are now found on consumer-level graphics
cards. The performance of these cards is growing at a much faster
rate than CPUs, at roughly Moore’s law cubed [4]. Soon the com-
putational power of these graphics processing units (“GPUs”) will
surpass that of the system CPU.

Some common applications of GPUs include geometric transforma-
tion, traditional and alternative lighting and shading models (“pro-
grammable shaders”), and procedural geometry, textures, and ani-
mation.

The accepted programming interfaces are assembler and C-like
“shading languages”, having roots in RenderMan’s shading lan-
guage [5, 14, 3, 10]. This is an unfortunate choice, because the
computations performed are naturally functional. In fact, these C-
like languages are only superfically imperative. This paper offers a
functional alternative to existing shading languages that simplifies
and generalizes them without sacrificing performance.

GPU architectures are naturally functional as well. The low-level



execution model is programs acting in parallel over input streams
producing new output streams with no dependence between stream
members, i.e., pure functions mapped over lists. Pipelining is used
between the different processor types (vertex and pixel processors
in the current architectures), much like compositions oflazystream
functions.

The main contributions reported in this paper are as follows:

• Optimized compilation of a functional language to modern
graphics hardware.

• A simple and practical embedding of parametric surfaces def-
inition and composition (generative modeling [12]) in a func-
tional programming language. (See also [6].)

• A simple but powerful semantic model for shading languages,
with direct implementation of that model.

2 Why Functional Graphics?

Functional programming is a natural fit for computer graphics sim-
ply because most of objects of interestare functions.

• Parametric surfaces are functions of typeR 2→ R 3, to be
evaluated over a subregion ofR 2.

• Implicit surfaces and spatial regions are functions of type
R 3→ R where surface, inside and outside are distinguished
by the sign of the resulting real value. Planar regions are func-
tions of typeR 2→ R .

• Height fields, as used to represent a class of geometry as well
as bump mapping and displacement mapping, are functions of
typeR 2→ R .

• Spatial transformations (e.g., affines and deformations) are
functions of typeR 3→ R 3 for 3D or R 2→ R 2 for 2D.

• Resolution-independent images are functions of type
R 2→ Color.

• 2D & 3D animations and time-varying values of all types are
functions fromR .

• Lights of all kinds are functions from points inR 3 to the di-
rection and color of the light delivered to that point.

• Shaders are functions from view information (ambient color,
eye point and set of active lights) and surface point informa-
tion (color, location and surface derivatives).

Computer graphics math makes extensive use linear algebra, and in
particular matrices for representing linear, affine, or projective spa-
tial transformations. There are actually competing conventions for
transforming vectors with matrices using matrix multiplication. In
one, the matrix is on the left and the vector is a column, while in
the other, the vector is a row and the matrix is on the right. Trans-
formations are composed by multiplying the matrices, taking care
with the order, consistently with the pre-multiply or post-multiply
convention. With a functional foundation, one can simply let the
transformations be functions that happen to be linear, affine or pro-
jective, or might be arbitrary spatial deformations, such as bends,
twists, or tapers.

3 Graphics processors

Vertigo targets the DirectX 8.1 vertex shader model shown in Fig-
ure 1, which is taken from [9]. This model and a multiprocessor

Figure 1. Vertex shader model

implementation are described in [8]. This unit is replicated, typ-
ically with four or eight instances. Every register is a quadruple
of 32-bit floating point numbers (a “quad-float”). Every “vertex”
is represented by up to 16 registers, having user-specified seman-
tics, e.g., coordinates of a 3D point, its normal vector, one or more
sets of texture coordinates, etc. Vertex and constant registers are
read-only, and the output registers are write-only. Temporary reg-
isters may be written and read during a vertex computation but are
cleared before each new vertex. That property is important, because
it means that (a) several vertex processors may run in parallel, and
(b) vertex processing is simply mapping of a pure function over a
vertex stream.

The input vertex stream is parceled out to the vertex processors,
and the resulting output is reassembled and fed to the pool of pixel
processors, which are not discussed in this article.

An important aspect of this model is that random memory access
is extremelylimited (to these registers). Large amounts of vertex
data are accessed by streaming from video RAM rather than being
accessed randomly system.

One reason GPUs and functional programming fit together is that
GPUs inherently compute staged functions. Vertex computations
depend on “constant” registers and on vertex registers. Values held
in the constant registers may be set at most once per stream of ver-
tices, being held constant among vertices in a stream. Typically
these constant registers contain both actual constants and time-
varying values. Thus any vertex computation may be cast as a cur-
ried function:

vc :: MeshData→ (VertexData→ Vout)

Given such a computationvc, mesh datamd, and a streamsvdof
vertex data, the vertex processor hardware simply computes

map(vc md) svd

4 Geometry

3D graphics cards mainly render vertex meshes, with each contain-
ing information such as 3D location, normal vector, and texture co-
ordinate vertices. The new breed of graphics processors, being pro-
grammable, are very flexible in the type of streams they can operate
on and what computations they can perform. Vertigo concentrates
on synthetic (or “procedural”) geometry, from which vertex meshes



are extracted automatically and efficiently. The main type of inter-
est is a (parametric) surface, which is simply a mapping fromR 2 to
R 3.

type Surf = R 2→ R 3

type R 2 = (R , R )
type R 3 = (R , R , R )

By convention, during display, surfaces will be sampled over the
2D interval[−1/2,1/2]× [−1/2,1/2].

At this point, the reader may safely interpretR as synonymous with
Float. The actual meaning ofR is expressionsoverFloat, so that
the implementation can perform optimizing compilation (Section 6)
and symbolic differentiation (Section 8).

Now one can start defining surfaces directly. For instance, here are
a unit sphere and a cylinder with a given height and unit radius.

sphere:: Surf
sphere(u, v) = (cosθ ·sin φ, sin θ ·sin φ, cosφ)

where θ = 2·π ·u
φ = π ·v

cylinder:: R → Surf
cylinder h(u, v) = (cosθ, sin θ, h·v)

where θ = 2·π ·u

Note that asu andv vary between−1/2 and 1/2, θ varies between
−π andπ, while φ varies between−π/2 andπ/2 (south and north
poles).

More powerfully, using higher-order functions, we can construct
surfaces compositionally, as in the method of generative model-
ing [12, 11]. The next several examples introduce and demonstrate
a collection of useful combinators for surface composition.

4.1 Height fields

“Height fields” are simply functions fromR 2 to R , and may be
visualized in 3D in the usual way:

type HeightField= R 2→ R

hfSurf :: HeightField→ Surf
hfSurf field(u, v) = (u, v, field (u, v))

A simple definition produces ripples:

ripple :: HeightField
ripple = sinU ◦magnitude

HeresinU is a convenient variant of thesin function, normalized
to have unit period. (The typeset code examples in this paper use
an infix “·” operator for regular multiplication and for scalar/vector
multiplation introduced below.)

cosU, sinU :: R → R
cosUθ = cos(2·π ·θ)
sinU θ = sin (2·π ·θ)

Now let’s add the ability to alter the frequency and magnitude of
the ripples. This ability is useful in many examples, so abstract it

Figure 2. rippleS 5.7 0.1

out:

freqMag:: Surf→ (R , R )→ Surf
freqMag f (freq, mag) = (mag·) ◦ f ◦ (freq·)

Combining, we get the surface shown in Figure 2.1

rippleS:: R 2→ Surf
rippleS= hfSurf◦ freqMag ripple

The definition offreqMaguses operators to scale the incomingR 2

and outgoingR 3 points. These operators belong to the vector space
type class defined as follows, for a scalar types and a vector space
v overs. (The actual operator for scalar multiplication is “*ˆ”.)

classFloating s⇒ VectorOf s v| v→ s where
(·) :: s→ v→ v
(<·>) :: v→ v→ s −− dot product

The general type offreqMagthen is as follows.

freqMag:: (VectorOf si vi, VectorOf so vo)
⇒ (vi→ vo)→ (si, so)→ (vi→ vo)

The constraints here say that the typesvi andvo are vector spaces
over the scalar fieldsi andso, respectively.

As another surface example, here is a wavy “eggcrate” height field:

eggcrate:: HeightField
eggcrate(u, v) = cosU u·sinU v

The definition ofeggcrate(u, v) above fits a pattern: the result
comes from sampling one function atu and another atv and com-
bining the results. Since this pattern arises in other examples, we
abstract it out.

eggcrate= cartF (·) cosU sinU

cartF :: (a→ b→ c)→ (u→ a)→ (v→ b)
→ (u, v)→ c

cartF op f g(u, v) = f u ‘op‘ g v

1The GUIs shown in this paper are automatically generated
based on the type of a parameterized surface and a small specifi-
cation of the labels and ranges for parameter sliders.



Figure 3. eggcrateS2.6 0.23

Now add control for frequency and magnitude of the waves, to get
the surface shown in Figure 3.

eggcrateS:: R 2→ Surf
eggcrateS= hfSurf◦ freqMag eggcrate

4.2 Sweeps

Another surface composition technique is using one curve to
“sweep” another.

type Curve2 = R → R 2

type Curve3 = R → R 3

sweep:: Curve3→ Curve3→ Surf
sweep basis scurve(u, v) = basis u+scurve v

Or more succinctly,

sweep= cartF (+)

For instance, a cylinder is a circle swept by a line.

cylinder h= sweep(addZ circle) (addXY(h·))

The helper functionsaddXYandaddZsimply increase the dimen-
sionality of a value inR or R 2 respectively, inserting zeros. For
convenience, they actually apply to functions that produceR or
R 2.

addX, addY, addZ:: (a→ R 2)→ (a→ R 3)
addX= lift1 (λ(y, z)→ (0, y, z))
addY= lift1 (λ(x, z)→ (x, 0, z))
addZ= lift1 (λ(x, y)→ (x, y, 0))

addYZ, addXZ, addXY:: (a→ R )→ (a→ R 3)
addYZ= lift1 (λx→ (x, 0, 0))
addXZ= lift1 (λy→ (0, y, 0))
addXY= lift1 (λz→ (0, 0, z))

The handy “lifting” functionals are defined as follows:

lift1 h f1 x = h (f1 x)
lift2 h f1 f2 x = h (f1 x) (f2 x)
lift3 h f1 f2 f3 x = h (f1 x) (f2 x) (f3 x)

. . .

We can define thecircle curve out of lower-dimensional functional
pieces as well:2

circle :: Curve2
circle = cosU ‘pairF‘ sinU

pairF :: (c→ a)→ (c→ b)→ (c→ (a, b))
pairF = lift2 (,)

4.3 Surfaces of revolution

Another commonly useful building block is revolution of a curve.
To define revolution, simply lift the curve intoR 3 by adding a zero
Z coordinate, and then rotate around theY axis.

revolve:: Curve2→ Surf
revolve curve(u, v) = rotY (2·π ·u) (addZ curve v)

The functionrotY is an example of a 3D spatial “transform”. Tra-
ditionally in computer graphics, transforms are restricted to linear,
affine, or projective mappings and are represented by matrices. In
a functional setting, they may more simply and more generally be
functions:

type Transform1 = R → R
type Transform2 = R 2→ R 2

type Transform3 = R 3→ R 3

To rotate a 3D point about theY axis, it suffices to rotate(x, z) in
2D and holdy constant:

rotY :: R → Transform3
rotY θ = onXZ(rotateθ)

rotate:: R → Transform2
rotateθ (x, y) = (x ·c−y·s, y·c+x ·s)

wherec = cosθ
s = sin θ

onXY, onYZ, onXZ:: Transform2→ Transform3
onXY f (x, y, z) = (x′, y′, z)

where (x′, y′) = f (x, y)
onXZ f (x, y, z) = (x′, y, z′)

where (x′, z′) = f (x, z)
onYZ f (x, y, z) = (x, y′, z′)

where (y′, z′) = f (y, z)

Spheres and cylinders are surfaces of revolution:

sphere = revolve semiCircle
cylinder h= onZ (h·) ◦ revolve(λy→ (1, y))

A semi-circle is just a circle sampled over half of its usual domain
([−1/4,1/4] instead of[−1/2,1/2]):

semiCircle= circle ◦ (/2)

2Building higher-dimensional shapes out of lower ones is one of
the themes of generative modeling [12, 11].



Figure 4. torusFrac1.5 0.5 0.8 0.8

Figure 5. eggcrateCylinder3.8 4.0 0.23

The torus is a more interesting example. It is the revolution of a
scaled and offset circle.

torus:: R → R → Surf
torus sr cr= revolve(const(sr, 0)+const cr·circle)

Note that the addition and multiplication here are working directly
on 2D curves, thanks to arithmetic overloading on functions and on
tuples.

instanceNum b⇒ Num(a→ b) where
(+) = lift2 (+)
(·) = lift2 (·)
negate = lift1 negate
fromInteger= const◦ fromInteger
−− etc.

To make the example more interesting, add parameters to scale
down the surface parametersu andv. The result is an incomplete
torus, as in Figure 4.

torusFrac sr cr cfrac sfrac=
torus sr cr◦ (·(cfrac, sfrac))

4.4 Displacement surfaces

As a final example of surface construction, Figure 5 results from

“displacing” a cylinder using the eggcrate height field.

eggcrateCylinder h fm=
displace(cylinder h) (freqMag eggcrate fm)

The definition of displacement is direct:

displace:: Surf→ HeightField→ Surf
displace surf field= surf +field·normal surf

Note that the surface, its normal, and the height field are all sampled
at the same point inR 2. The displacement vector gets its direction
from the surface normal and its distance from the height field.

Normals are computed by taking the cross products of the partial
derivatives.

normal:: Surf→ Surf
normal= normalize◦ cross◦ derivative

As described in Section 8, Vertigo computes derivatives exactly, not
through numeric approximation.

Vector normalization scales to unit length, and is defined indepen-
dently of any particular vector space.

normalize:: VectorOf s v⇒ v→ v
normalize v= v/magnitude v

magnitude:: VectorOf s v⇒ v→ s
magnitude v= sqrt (v<·>v)

The type ofnormal is actually more general:

normal :: (Derivative c vec vecs
, Cross vecs vec
, VectorOf s vec)

⇒ (c→ vec)→ (c→ vec)

The constraints mean that (a) the derivative of ac→ vec function
has typec→ vecs, (b) the cross product of avecsvalue has type
vec, and (c) the typevecis a vector space over the scalar fields. In
theSurf case,s= R , c = R 2, vec= R 3, andvecs= (R 3, R 3).

The inferred type ofdisplaceis also more general than given above.

displace:: (Num(c→ vec)
, Cross vecs vec
, Derivative c vec vecs
, VectorOf s vec
, VectorOf(c→ s) (c→ vec))

⇒ (c→ vec)→ (c→ s)→ (c→ vec)

For instance, the cross product of a single 2D vector(x, y) is the 2D
vector(y,−x), and thedisplacefunction may be used to displace
one 2D curve with a “2D height field” (of typeR → R ). In this
case,s= R , c = R , vec= R 2, andvecs= R 2.

5 Shading

Shading languages began with Cook’s “shade trees”, which were
expression trees used to represent shading calculations. The most
successful shading language has been RenderMan’s [5, 14].

One interesting aspect of RenderMan’s shading language is that
the data it uses comes in at different frequencies (surfaces patches,
points on surfaces, and light sources) . As an example, here is a def-



inition of a diffusely reflecting surface [14, page 335] (simplified).

surface
matte(float Ka, Kd)
{

Ci = Cs * (Ka*ambient() + Kd*diffuse(N));
}

In explanations of this shading language, invocations of a param-
eterized shader likematte are referred to as “instances”, and the
parameters likeKa andKd are referred to as “instance variables”. A
given instance instance is “called” perhaps thousands or millions of
times for different sample points on a surface. These “calls” to a
shader instance supply information specific to surface points, such
as surface normal (N) and surface color (Cs). “It may be useful to
think of a shader instance as an object bundling the functionality of
the shading procedure with values for the instance variables used by
the procedure” [14, Chapter 16]. Shader calls read from and write
to special global variables.

There is a third frequency of evaluation as well, namely the contri-
bution of several light sources per surface point. Here is a defini-
tion of a diffuse lighting function, commonly used in shader defini-
tions [14, Chapter 16].

color
diffuse(point norm)
{

color C = 0;
unitnorm = normalize(norm);
illuminance( P, unitnorm, PI/2 )

C += Cl * normalize(L).unitnorm;
return C;

}

Theilluminance construct iterates over light sources, combining
the effects of its body statement, using light-source-specific values
for light color (Cl) and direction (L).

5.1 The essence of shading languages

To create a semantic basis for shaders, consider the information that
a shader has access to and what it can produce. Some information
comes from the viewing environment, some comes from a point on
the surface, and some from a light source relative to that point.

A viewing environment consists of an ambient light color, an 3D
eye position, and a collection of light sources:

type ViewEnv= (Color, R 3, [Light])

Information about a surface at a point includes the point’s posi-
tion, a pair of partial derivatives (each tangent to the surface at that
point), and an intrinsic color:

type SurfPt= (R 3, (R 3, R 3), Color)

For our purposes, a light source is something that provides light in-
formation to every point in space (though to some points it provides
blackness), independent of obstructions.3

type Light = R 3→ LightInfo

Light information delivered to a point consists simply of color and

3In a more sophisticated model, a light source would probably
also take into consideration atmosphere and solid obstructions.

direction. Any given shader will decide what to do with this infor-
mation. Attenuation and relation of light position (if finitely distant)
to surface position are already accounted for.

type LightInfo= (Color, N3)

For example, here are definitions for simple directional and point
lights (without distance-based attenuation):

dirLight :: Color→ N3→ Light
dirLight col dir = const(col, dir)

pointLight:: Color→ R 3→ Light
pointLight col lightPos p=

(col, normalize(lightPos−p))

There are three different kinds of shaders, corresponding to the
three stages of information used in the shading process. “View
shaders” depend only on viewing environment; “surface shaders”
depend additionally on surface point info; and “light shaders” de-
pend additionally on a single light info. View shaders are not par-
ticularly useful, but are included for completeness.

Rather than restricting to a single resulting value type likeColor, it
will be useful to generalize to arbitrary result types:4

type VShader a= ViewEnv→ a
type SShader a= VShader(SurfPt→ a)
type LShader a= SShader(LightInfo→ a)

5.2 A “shading language”

Given the model above, one could simply start writing shaders as
functions. Doing so leads to awkward-looking code, however, due
to the explicit passing around and extraction of view, surface point,
and light information. This explicit passing is not necessary in the
RenderMan shading language thanks to the use of global variables.
Fortunately, we can keep our function-based semantic model and
remove the notational clutter. The trick is to build shaders using
higher-order building blocks, and define overloadings.5

First define extractors that access information from the view envi-
ronment:

ca :: VShader Color; ca (c, , ) = c
eye :: VShaderN3 ; eye ( , e, ) = e
lights :: VShader[Light]; lights ( , , l) = l

Similarly for surface point info:

pobj :: SShaderR 3 ; pobj (p, , ) = p
dp :: SShader(R 3, R 3); dp ( , d, ) = d
cs :: SShader Color ; cs ( , , c) = c

Using the full derivative (Jacobian matrix)dp, we can easily define
the two partial derivatives by selection and surface normal vector

4In the Renderman shading language, shaders do not have re-
turn values at all, but rather assign to globals, and shaders are not
allowed to call other shaders. There are also “functions”, which
return values and can be called by shaders and other functions.

5As discussed in Section 5.3, one could instead use implicit pa-
rameters.



by cross product.

dpdu, dpdv:: SShaderR 3

dpdu e s= fst (dp e s)
dpdv e s= snd(dp e s)

n :: SShader N3
n = normalize(cross dp)

Light shaders need extractors as well:

cl :: LShader Color; cl (c, ) = c
l :: LShader Dir3E; l ( , d) = d

It is easy to precisely define a counterpart to RenderMan’s
illuminance construct. To turn a light shader into a surface shader,
simply iterate over the light sources in the viewing environment,
apply to the surface point to get the required light information, and
sum the results.6

illuminance:: Num a⇒ LShader a→ SShader a
illuminance lshader v@( , , ls) s@(p, , ) =

sum[lshader v s(light p) | light← ls]

Sometimes we need to mix light and surface shaders, which we do
by lifting a surface shader into a light shader. For instance, the
dot product between normal vector and light direction is commonly
used in shaders.

ndotL:: LShaderR
ndotL= toLS n<·>l

The dot product here is on functions.

ThetoLSfunction simply adds an ignored argument:

toLS ss v s = ss v s

This function is actually overloaded to work on view shaders and
non-shaders as well, adding one or two ignored arguments, respec-
tively. Similarly, there are overloadedtoESandtoSSfunctions.

5.3 Implicit parameters

We also implemented the shading language using implicit parame-
ters [7]. The following definitions describe dependencies on view,
surface point, and light information, abstracting out the details:

type ViewDep a=
(?ca :: Color, ?eye:: R 3, ?lights :: [Light])⇒ a

type SurfDep a =
(?cs:: Color, ?pobj :: R 3, ?d :: (R 3, R 3))⇒ a

type LightDep a= (?cl :: Color, ?l :: R 3)⇒ a

type VShader a= ViewDep a
type SShader a= VShader(SurfDep a)
type LShader a= SShader(LightDep a)

This formulation eliminates the need fortoLSand thelift i func-
tions used in the explicit function formulation. It is, however, rather
demanding of the type system. The original implementations of
implicit parameters in GHC did not support type definitions like

6A more sophisticated renderer might use a different set of light
sources, synthesized from the environment’s lights, simulate area
light sources and inter-object reflection and occlusion.

ViewDep, SurfDep, andLightDep, requiring instead that all of the
implicit parameters be mentioned explicitly at every use. For ex-
ample, instead of the simple types forn andndotLabove, we would
have something like the following.

n :: (?d :: (R 3, R 3))⇒ N3
n = normalize(cross?d)

ndotL:: (?d :: (R 3, R 3), ?l :: R 3)⇒ R 3

ndotL= n<·>?l

Note how theseimplementationsof n andndotL show through in
their types. It gets worse from there: as more and more pieces
of the view, surface point, and light contexts are used, the explicit
lists of implicit parameters grow. Fortunately, GHC’s type checker
was improved to handle definitions likeViewDepand the others,
so we were able to hide all of the implicit parameters. The actual
definitions look like the following.

dp :: SShader(R 3, R 3)
dp= ?dp

n :: SShaderR 3

n = normalize(cross dp)

ndotL:: LShaderR 3

ndotL= n<·>l

The improvements made to GHC for supporting such convenient
definitions are not present in Hugs, which we also wanted to use,
so for now, Vertigo has both the explicit and implicit parameter
approaches. Since the latter is more convenient, we will use it for
the examples in the next section.

5.4 Sample shading specifications

Given this simple shading language, we can define some common
shaders. The simplest (other than pure ambient or pure intrinsic) is
pure diffuse. It usesn<·>l to scale the light color, and sums over
all light directionsl.

diffuse:: SShader Color
diffuse= illuminance(ndotL·cl)

We then make a weighted combination of pure ambient (ca) and
diffuse:

ambDiff :: R 2→ SShader Color
ambDiff (ka, kd) = cs· (ka·ca+kd·diffuse)

To make surfaces look shiny, we turn to specular shading, which is
independent of intrinsic color.

specular:: R → SShader Color
specular sh= illuminance((vdotR∗∗sh) ·cl)

vdotR:: LShaderR
vdotR= eyeDir<·>reflect l n

eyeDir:: SShader N3
eyeDir= normalize(eye−pobj)



The pictures in Section 4 are made using a weighted combination
of ambient, diffuse, and specular shading.

basic:: R 4→ Shader Color
basic(ka, kd, ks, sh) =

ambDiff (ka, kd)+ks·specular sh

Many other shaders may be defined, e.g., brushed metal.

6 The GPU compiler

Vertigo is implemented as an optimizing compiler, in the style of
Pan [2]. The main difference is that Vertigo targets a modern graph-
ics processor architecture, rather than a general purpose CPU in-
struction set.

The target GPU architecture and instruction set have some unusual
traits that make it challenging and interesting to compile into correct
and efficient code.

• Most operations work on quad-floats.

• Operand registers may be negated and/or “swizzled” for free.
Swizzling is extraction and rearrangement of scalar compo-
nents to form a new vector, possibly omitting or replicating
components. The same component may be used more than
once to form an operand.

• There are no literals in the assembly code. All literals must be
loaded into constant registers (also quad-floats).

• At most one constant register and one vertex register can be
accessed per instruction.

• There is no conditional instruction.

• There is a multiply-add instruction (a·b+c).

• There are no trig functions, so they must be approximated.

6.1 Front end

The front end of the Vertigo compiler is similar to that of Pan [2],
with the following main differences:

• The data types supported are 1- to 4-tuples of 32 bit floats.

• The primitive operations are altered to target GPUs.

• Many of the algebraic rewrites use associative-commutative
matching.

The programming interface is a set of statically typed definitions
that make calls to a layer of dynamically typed “smart construc-
tors”, as in Pan [2]. The typeR used above refers to statically
typed, float-valued expressions.

The smart constructors perform bottom-up algebraic simplifications
and build expressions, which may be literals, variables, applications
of primitive operators, or let-bindings:

data Exp= LitVec Vector
| Var Id Type
| Apply Op[Exp]
| Let [(Id, Exp)] Exp

type Vector= [Float]

type Id = String −− variable name

The set of primitive operators reflect the GPU instruction set:

data Op= Add|Mul |Mad |Max |Min | Sge| Slt
| Mov
| Rcp| Rsq| Log | Exp
| Dp3 | Dp4
| Expp| Logp| Frc
| Negate| Swizzle[Int] |MkVec
| Frac
| Cos| Sin

Notes:

• The first line (add, multiply, multiply-add, max, min,≥, and
<) contains SIMD operations: The last two return a vector
containing floats that represent booleans, using zero for false
and one for true. All are binary exceptMad, which is ternary
(a·b+c).

• Mov is the unary identity operator.

• The third line (1/x, 1/
√

x, log2x, and 2x) contains operations
that work only on scalar values (presumably because SIMD
execution would use too much time or silicon).

• The fourth line contains 3D and 4D dot product operations,
computing scalar results.

• Negation and swizzling are pseudo-operations. They are inte-
grated into each generated instruction but are logically sepa-
rate at this level. Vector construction is also a pseudo-op.

• TheSinandCosoperators are introduced but replaced later by
approximations. The main reason is to allow computation of
derivatives before approximation rather than after, resulting in
a more precise approximation of the derivative.

6.2 Smart constructors

The smart constructors invoked by the statically typed interface dif-
fer from those in Pan because of the target architecture.

For instance, as the only comparators are≥ and<, other boolean
operators must be synthesized. For clarity, we state the translations
in concrete syntax, though the actual implementation does pattern
matching on theExp.

e1 == e2 = e1 ≥ e2∧e2 ≥ e1
e1 6= e2 = e1 < e2∨e2 < e1

a > b = b < a
a≤ b = b≥ a

not (e1 < e2) = e1 ≥ e2
not (e1 ≥ e2) = e1 < e2

Although the statically typed layer has aBool type, the GPU archi-
tecture simulates booleans via floating point numbers, using 1.0 for
Trueand 0.0 for False. Thus,

not c= 1−c

(∧) = min
(∨) = max

if c then a elseb = c·a+not c·b



Note in this last definition thatif-then-elseis strict.7

6.3 Literal extraction

Because the target instruction set does not support literals, the com-
piler must extract literals and allocate them into the constant register
set. Extraction proceeds in three phases:discoverthe literals,pack
efficiently into a constant register file, andreplacethe literals with
variables (possibly swizzled and negated).

extractLiterals:: Int→ Exp→ (Exp, RegFile)
extractLiterals numRegs exp=

(replace regs exp, regs)
where

regs= pack numRegs(discover exp)

discover:: Exp→ [Vector]
pack :: Int→ [Vector]→ RegFile
replace :: RegFile→ Exp→ Exp

type RegFile= [Vector]

6.4 Codegen normal form

In preparation for code generation, the Vertigo compiler rewrites
expressions into “codegen normal form” (CNF) designed to reflect
what the processor can do.

CNF is a subset of theExptype such that:

• There are no literals.

• Operators other thanMkVecmay only be applied to only to
“operands”, which are swizzled and possibly negated vari-
ables.

• Swizzling, negation, and variables show uponly in these
operands. (If necessary, aMov (identity) operator application
is inserted.)

Variables will correspond to readable registers, possibly swizzled
for layout. Swizzling and negation get rewritten away whenever
possible, by using distributive properties and pushing them into
operand position where they cost nothing.

For negation, the following distributive properties are used:8

−(−a) = a
−(a+b) = (−a)+(−b)
−(max a b) = min (−a) (−b)
−(min a b) = max(−a) (−b)
−(a·b+c) = a· (−b)+(−c)
−(a·b) = (−a) ·b
−(1/a) = 1/(−a)
−(a<·>b) = (−a)<·>b

−(e1, . . . , en) = (−e1, . . . ,−en)
−(e.swiz) = (−e).swiz

The last rule refers to negations of swizzled expressions. Hereswiz

7More modern GPU architectures do support booleans and non-
strict conditionals.

8These rewrites do not need to be applied recursively. One ap-
plication suffices to move the negation to operand position. Recall
that<·> is dot product.

refers a sequence of ofx, y, z, andw components (withn compo-
nents ife :: R n).

Similarly, there are helpful properties for rewriting swizzlings. For
all SIMD operationsop,

(op e1 . . . en).swiz= op (e1.swiz) . . . (en.swiz)

Swizzlings of explicit vector constructions get swizzled syntacti-
cally, e.g.,

(a, b, c).xzyz= (a, c, b, c)

Composed swizzles are composed syntactically, e.g.,

(e.yzw).yx= e.zy

When a negation or swizzling cannot be pushed into an existing
operator, we simply introduce a new identity operator (Mov) to push
it into, which will cost an additional instruction.

CNF conversion also turns combinations of multiply and add into
singleMad applications.

6.5 Assembly language modeling

An assembly program is simply a list of instructions. All instruc-
tions are operator applications (evenMov) and contain a comment,
in which the compiler inserts a binding in CNF.

type Asm = [Instr]
data Instr = PrimOp Op Dest[Source] String

A register has a register class and index and a friendly name

data RegClass= RegIn| RegConst| RegTemp
| RegAddr| RegOut

data Reg= Reg RegClass Int String

Source registers may be swizzled and negated. The register may
not be an output.

data Source= Source NegSwiz Reg

data NegSwiz= NegSwiz Bool Swizzle
type Index = Int
type Swizzle = [Index]

Each destination has a register and a layout saying which floats
within the register get used. The register may not be an input.

data Dest = Dest Reg Layout
type Layout= [Index] −− distinct

6.6 Code generation

Given an expression in CNF, code generation is fairly straightfor-
ward. Because GPUs have no random memory access, optimized
register allocation is particularly important. The Vertigo compiler
uses a simple functional implementation of the traditional dynamic
programming technique [1].

A “code generator” tells how much free register space is needed (in
floats) and how to generate code. The free space requirement will



be used for argument reordering.

type CodeGen= (Int, Gen)

A Gengenerates code for a given destination, an extra swizzle re-
quired to accommodate the destination layout, a mapping from vari-
ables to sources, and a pool of free temporary registers.

type Gen= Dest→ Swizzle→ SourceEnv→ Pool→ Asm

type SourceEnv= [(Id, Source)] −− assoc list

Code generation then maps an expression in CNF into aCodeGen:

codegen:: CNF→ CodeGen

Thanks to CNF, there are only two cases: (a) applications of oper-
ators to optionally negated and swizzled variables, and (b)let ex-
pressions.

The application case is simple: for each argument, get the source
bound to the variable in the environment, and compose the contex-
tual negation and swizzle with the source’s to form the instruction
operand. Then use the destination layout as a mask for the result
register.

There is one tricky point arising from layout. Variables smaller
than R 4 may require swizzling on write, which is not supported
in general by the processor architecture. However, foralmost all
operations, a write swizzle can be correctly simulated by a combi-
nation of write masking and argument swizzling. For SIMD ops,
it suffices to swizzle each argument correspondingly. For scalar-
producing ops, the same scalar result is written to all components
of the output, so write swizzling is just write masking. The remain-
ing instructions write to all four components, and so do not pose
a problem, unless a non-obvious layout were used. To handle this
concern, all four-float allocations are given the identity layout, so
that unpredictable layout swizzling cannot happen. If we were not
so lucky with the instruction set, we could insert aMov instruction
that swizzled its argument as necessary.

All register allocation is handled by thelet case. For ann-ary let,
there aren+ 1 stages of evaluation: one for each right hand side
and one for the body. The register use will be the maximum of the
register uses over the n+1 stages. At each stage, we have to preserve
the registers used to hold the results of previous stages. Since later
stages have the added burden of preserving earlier results, we rear-
range the bindings to put the less register-intensive bindings later,
thus minimizing the maximum register usage over the stages. We
cannot move the body, since it depends on all the bindings.

codegen(Let bindings body) = (nr, gen)
where

(vars, types, cgs) =
unzip3 (reorder(zip3 vars0

(map typeOf exps0)
(map codegen exps0)))

(vars0, exps0) = unzip bindings

Reordering just sorts by decreasing register use:

reorder= sortF (λ( , , (nr, ))→−nr)

wheresortF sorts based on a given key extractor function:

sortF :: Ord k⇒ (a→ k)→ [a]→ [a]
sortF key=

sortBy(λa b→ key a‘compare‘ key b)

To determine the number of free registers needed for thelet expres-
sion, we need to know (a) the space tied up at each stage (sum of
the sizes of values saved so far), and (b) the amount of free space
needed for each binding.

savedRs = scanl1 (+) (
0 : map type2size types)

nr = maximum(
zipWith(+) (nrs++[nrb]) savedRs)

(nrs, gens) = unzip cgs
(nrb, genb) = codegen body

The code generated for thelet expression comes from code gener-
ated for the bindings followed by code for the body.

gen dest swiz env pool=
asm++genb dest swiz env′ pool′

where
(asm, env′, pool′) =

genBindings vars types gens env pool

Code generation for bindings (genBindings) works simply by loop-
ing through the (now reordered) bindings, allocating space from the
temporary registers, and recursively generating code for the right
hand sides.

7 Sample optimizations

In this section, we show examples to give a flavor of the kinds of
optimizations that Vertigo performs in practice.

7.1 Vector normalization

It is common to need to normalize vectors (i.e., scale them to unit
length). One use is the construction of normals for shading (Sec-
tion 5.2) and for displacement surfaces (Section 4.4). A painful
tradeoff in graphics programming is whether utility functions like
normal computation should normalize their vector arguments or as-
sume them to have been normalized. Since execution speed is so
important, the choice is often made to assume pre-normalization,
so that the normalization can be avoided in a few cases. Unfortu-
nately, this choice encourages one of the classic computer graphics
programming bugs, which is failure to normalize before calling, ei-
ther due to forgetting requirement or falsely assuming it to hold.

With a sufficiently aggressive optimizer, one might hope to elimi-
nate the pre-normalization requirement and still get efficient code
when the actually argument has been normalized. That is, the
compiler should perform the following optimization (interprocedu-
rally).9

normalize(normalize v) = normalize v

Rather than wire this domain-specific optimization into an other-
wise domain-independent compiler, Vertigo performs simpler and
more general rewrites. Given the definition ofnormalizefrom Sec-

9There may be other, subtler, sources of redundant normaliza-
tion.



tion 4.4),normalize(normalize v) expands to

normalize v/sqrt (normalize v<·>normalize v)

The sub-expressionnormalize v<·>normalize vexpands to

(v/sqrt (v<·>v))<·>(v/sqrt (v<·>v))

The following rewrites apply, withr ands ranging over scalars and
u andv over vectors:10

v/s = (1/s) ·v
(s·u)<·>v = s· (u<·>v)
(1/r) · (1/s) = 1/(r ·s)
sqrt r ·sqrt s= sqrt (r ·s)
sqrt (s·s) = s

The result is

(v<·>v)/(v<·>v)

which simplifies to 1. The overall expression then becomes

normalize v/sqrt 1

which simplifies tonormalize v.

As a particularly fortuitous example of this optimization and oth-
ers, considernormal sphere. Without optimization there are 28 ad-
ditions, 50 multiplications, and four trigonometry operations. With
optimization there are two additions, four multiplications, and four
trigonometry operations. In fact, the result is identical tosphere
itself, so the savings are compounded when rendering a sphere,
which requires the surface and its normal.

7.2 Cross products

The previous example is architecture-independent. The definition
of 3D cross products, used also in normal computation, gives rise
to an example of architecture-specific optimization.

(×) :: (Num s, VectorOf s(s, s, s))
⇒ (s, s, s)→ (s, s, s)→ (s, s, s)

(a1, b1, c1) × (a2, b2, c2) =
(b1 ·c2−b2 ·c1, c1 ·a2−c2 ·a1, a1 ·b2−a2 ·b1)

Automatic vectorization performs the following transformation for
all SIMD operationsop:

(op a1 b1 . . . , op a2 b2 . . . , . . . , op an bn . . .) =
op (a1, a2, . . . , an) (b1, b2, . . . , bn) . . .

This rule applies four times in the definition of× (since subtraction
is represented by addition and unary negation), yielding

(a1, b1, c1) × (a2, b2, c2) =
(b1, c1, a1) · (c2, a2, b2)− (b2, c2, a2) · (c1, a1, b1)

Note that each constructed vector is a rearrangment of one of the
vector arguments to×. That fact means that the vectors are just
swizzlings:

u × v = u.yzx·v.zxy−v.yzx·u.zxy

10The Vertigo compiler matches for these rules modulo associa-
tivity and commutativity of multiplication and dot product.

In CNF, the body of this definition is

let q = v.yzx·u.zxyin
mad(u.yzx) (v.zxy) (−q)

Assumingu andv are allocated in the first three floats of registers
r0 andr1 respectively, and the result should go into the first float
of r2, Vertigo produces the following two instructions:

mul r2.x, r1.yzx, r0.zxy
mad r2.x, r0.yzx, r1.zxy, -r2.x

8 Derivatives

The derivativeoperator maps functions to functions. In general,
the derivative of a function of typeα→ β is a function of typeα→
L(α;β), where “L(α;β)” means thelinear subset ofα→ β [13].
These linear maps are typically represented by real numbers, vec-
tors, matrices, etc, depending onα and β. Because Vertigo uses
these data representations rather than functions for derivative val-
ues,derivativebelongs to a multi-parameter type class:

classDerivativeα β lmap| α β→ lmapwhere
derivative:: (α→ β)→ (α→ lmap)

When α = R , L(α;β) can be represented byβ for vector space
typesβ.

instance(DDeriv b, Substable b)⇒
DerivativeR b bwhere . . .

If, for instance,β = R 3, then the derivative values are represented
as vectors of three scalar-valued “partial derivatives”.

Whenα = α1×·· ·×αn, L(α;β) can be represented byγ1×·· ·×γn,
whereγi representsL(αi ;β).

instance(Derivativeα1 β γ1
, Derivativeα2 β γ2)⇒

Derivative(α1, α2) β (γ1, γ2) where . . .

Similarly for triples, etc. Whenβ happens to be a tuple type, the
resulting derivative value representation is a tuple of tuples and co-
incides with what is known as a “Jacobian matrix”.

TheSubstabletype class contains types that support “substitution”
of an expression for a variable. In the Vertigo implementation, the
Substableinstances areR and tuples ofSubstabletypes. Differen-
tiation of functions works by applying the function to one or more
variable expressions, symbolically differentiating the resulting ex-
pression(s), and turning the result back into a function that substi-
tutes for the introduced variables.

TheDDeriv class supports differentiation with respect tovariables.
It includesR (expressions overFloat), and tuples ofDDeriv types.
The R case simply removes the statically typed wrapper, reveal-
ing an underlyingExp (Section 6.1), where the actual, recursive
symbolic differentiation algorithm takes place. It is critical for effi-
ciency to memoize that algorithm, in order to avoid the usual prob-
lem of time and space blow-up for symbolic differentiation. This
differentiation algorithm is very simple (Figure 8).

9 Further work

While the Vertigo compiler does a good job of algebraic simplifi-
cation, reducing instructions generated and registers used, there is



ederiv:: Id→ Exp→ Exp
ederiv v exp= d exp

where
d = memo nd
−− nd is the non-memoized d

nd e@(LitVec ) = zero(typeOf e)
nd (Var v′ ty) | v == v′ = one ty
nd (Var ty) = one ty
nd (Apply Add[u, v]) = d u+d v
nd (Apply Mul[u, v]) = u·d v+v·d u
nd (Apply Rcp[v]) = −d v/(vˆ2)
nd (Apply Sin[u]) = cos u·d u
nd (Apply Cos[u]) = −sin u·d u
nd (Apply Rsq[u]) = −d u· rsqrt u/(twoF·u)
nd e@(Apply Exp[u]) = e·d u· logTwoF
nd (Apply Log[u]) = recip u· logTwoF·d u
nd (Apply Negate[u]) = −(d u)
nd (Apply MkVec es) = vecL(map d es)
nd (Apply(Swizzle s) [u]) = swizzle s(d u)
nd (Apply Frac[u]) = d u
nd (Apply Dp3 [u, v]) = dp3 u (d v)+dp3 v (d u)
nd (Apply Dp4 [u, v]) = dp4 u (d v)+dp4 v (d u)
nd (Apply Slt[u, v]) = zero(typeOf u)
nd (Apply Sge[u, v]) = zero(typeOf u)
nd (Apply Max[u, v]) = ifE (u > v) (d u) (d v)
nd (Apply Min[u, v]) = ifE (u < v) (d u) (d v)

Figure 6. Symbolic differentiation

much room for improvement.

One improvement would be connecting algebraic simplification
with register allocation. For instance, the automatic vectorization
transformation mentioned in Section 7.2 replaces one vector con-
struction withn of them, and is only beneficial when the vector
constructions become register swizzles, which are free. More gen-
erally, it is important to coalesce scalar operations into vectors oper-
ations where possible, but not at the cost of moving scalars into vec-
tors at run-time. More sophisticated analysis could allocate scalars
in the same vector at compile time, when doing so would allow re-
placing several scalar operations with vector operations. Since the
same scalar may be used in more than once, there may be competi-
tion among different potentially vectorizable uses of a given scalar.

A related issue is the tension between optimization and sharing.
Consider the definition ofif-then-else in Section 6.2. Optimizing
not ccould easily break the sharing of part of the computation ofc,
which may more than defeat the optimization.

Newer generations of graphics vertex processors have more power-
ful instruction sets, including looping, predicated instructions, con-
ditional branching, boolean and integer registers. They also have
larger register sets and program length bounds. These advance-
ments introduce opportunities and challenges for compilation. New
pixel processors are also much more general and now worth target-
ing. Another general challenge is partitioning computation between
vertex and pixel processors.

10 Conclusions

Programmable multiprocessor architectures have finally reached
the masses in the form of modern graphics cards. This is a great
opportunity for functional programming, because statelessness nat-
urally fits the hardware, and because the objects of interest in com-

puter graphics tend to be functions. This paper describes Vertigo,
a functional language for 3D shape and shading and an optimizing
compiler that targets graphics processors. The language has simple,
transparent semantics in terms of first-class functions. Higher-order
programming provides powerful abstractions that allow surfaces to
be composed from simpler components, often of lower dimension.

Shading languages since Renderman’s have had a rather peculiar
execution model, explained as “instancing”, “calling”, and iteration
over light sources. As we have shown, execution can be explained
simply as curried functions having natural staging: shader-specific
parameters (instancing), view and surface point information (call-
ing), and per-light information.

The Vertigo system runs on Windows, with DirectX 9
and the .NET framework. It may be downloaded from
http://conal.net/Vertigo.
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