Programming Graphics Processors Functionally

k
Conal Elliott

Abstract Categories and Subject Descriptors

Graphics cards for personal computers have recently undergoneD.1.1 [Programming Techniqueg: Applicative (Functional) Pro-
a radical transformation from fixed-function graphics pipelines to gramming; D.1.3 Programming Techniqueg: Concurrent Pro-
multi-processor, programmable architectures. Multi-processor ar- gramming; D.3.4 Programming Language$: Processors—
chitectures are clearly advantageous for graphics for the simplecode generation, compilerd.3.3 [Computer Graphics]: Pic-
reason that graphics computations are naturally concurrent, map-ture/lmage Generation; 1.3.5pmputer Graphics]: Computa-
ping well to stateless stream processing. They therefore parallelizetional Geometry and Object Modeling; 1.3.€¢mputer Graph-
easily and need no random access to memory with its problematicics]: Methodology and TechniquesGfaphics data structures
latencies. and data types,Languaget3.7 [Computer Graphics]: Three-
Dimensional Graphics and Realism
This paper presenkgertigo, a purely functional, Haskell-embedded
language for 3D graphics and an optimizing compiler that gener-
ates graphics processor code. The language integrates procedura@eneral Terms
surface modeling, shading, and texture generation, and the com-AI ith Perf Desian. L
piler exploits the unusual processor architecture. The shading sub- gorithms, Performance, Design, Languages
language is based on a simple and precise semantic model, in con-
trast to previous shading languages. Geometry and textures are aIscKeywo rds
defined via a very simple denotational semantics. The formal se-
mantics yields not only programs that are easy to understand andComputer graphics, graphics processors, compilers, code gener-
reason about, but also very efficient implementation, thanks to a ation, partial evaluation, computer algebra, domain-specific lan-
compiler based on partial evaluation and symbolic optimization, guages, functional programming, functional geometry, 3D model-
much in the style of Pan [2]. ing, graphics languages, shading languages, procedural geometry,

procedural shading
Haskell's overloading facility is extremely useful throughout Ver-
tigo. For instance, math operators are used not just for floating .
point numbers, but also expressions (for differentiation and com- 1 Introduction
pilation), tuples, and functions. Typically, these overloadings cas- L .
cade, as in the case of surfaces, which may be combined via mathThere has recently been a revolution in processor architecture
operators, though they are really functions over tuples of expres- for personal computers. High-performance, multi-processor, data-
sions on floating point numbers. Shaders may be composed withStreaming computers are now found on consumer-level graphics
the same notational convenience. Functional dependencies are ex¢ards. The performance of these cards is growing at a much faster

ploited for vector spaces, cross products, and derivatives. rate than CPUs, at roughly Moore’s law cubed [4]. Soon the com-
putational power of these graphics processing units (“GPUs”) will

surpass that of the system CPU.

“The work reported in this paper was done while the author was at Some common applications of GPUs include geometric transforma-

Microsoft Research. tion, traditional and alternative lighting and shading models (“pro-
grammable shaders”), and procedural geometry, textures, and ani-
mation.

The accepted programming interfaces are assembler and C-like

“shading languages”, having roots in RenderMan’s shading lan-

guage [5, 14, 3, 10]. This is an unfortunate choice, because the
Permission to make digital or hard copies of all or part of this work for personal or COMPpUtations performed are naturally functional. In fact, these C-
classroom use is granted without fee provided that copies are not made or distributed like languages are only superfically imperative. This paper offers a
for profit or commercial advantage and that copies bear this notice and the full citation fynctional alternative to existing shading languages that simplifies

on the first page. To copy otherwise, to republish, to post on servers or to redistribute 5 generalizes them without sacrificing performance.
to lists, requires prior specific permission and/or a fee.

Haskell’04, September 22, 2004, Snowbird, Utah, USA. . .
Copyright 2004 ACM 1-58113-850-4/04/0009 ...$5.00 GPU architectures are naturally functional as well. The low-level

execution model is programs acting in parallel over input streams

producing new output streams with no dependence between stream

members, i.e., pure functions mapped over lists. Pipelining is used

Vertex Data Registers

vls

between the different processor types (vertex and pixel processors

in the current architectures), much like compositionaaf stream
functions.

The main contributions reported in this paper are as follows:

e Optimized compilation of a functional language to modern
graphics hardware.

e A simple and practical embedding of parametric surfaces def-
inition and composition (generative modeling [12]) in a func-
tional programming language. (See also [6].)

e A simple but powerful semantic model for shading languages,
with direct implementation of that model.

2 Why Functional Graphics?

Functional programming is a natural fit for computer graphics sim-
ply because most of objects of interast functions.

e Parametric surfaces are functions of tygé — R3, to be

evaluated over a subregion &E.

Implicit surfaces and spatial regions are functions of type
R®5 — R where surface, inside and outside are distinguished
by the sign of the resulting real value. Planar regions are func-
tions of typeR? — R..

type R? — R.
Spatial transformations (e.g., affines and deformations) are
functions of typeR3® — R for 3D or R2 — R2 for 2D.

Resolution-independent images are functions of type
R2 — Color.

2D & 3D animations and time-varying values of all types are
functions fromg..

Lights of all kinds are functions from points 2 to the di-
rection and color of the light delivered to that point.

Shaders are functions from view information (ambient color,
eye point and set of active lights) and surface point informa-
tion (color, location and surface derivatives).

Address Register

j Constant Registers

Temporary Registers

=

Ed|
=

_____ c05

oTn

Output Registers

Figure 1. Vertex shader model

implementation are described in [8]. This unit is replicated, typ-
ically with four or eight instances. Every register is a quadruple
of 32-bit floating point numbers (a “quad-float”). Every “vertex”

is represented by up to 16 registers, having user-specified seman-
tics, e.g., coordinates of a 3D point, its normal vector, one or more
sets of texture coordinates, etc. Vertex and constant registers are
read-only, and the output registers are write-only. Temporary reg-
isters may be written and read during a vertex computation but are
cleared before each new vertex. That property is important, because
it means that (a) several vertex processors may run in parallel, and
(b) vertex processing is simply mapping of a pure function over a

Height fields, as used to represent a class of geometry as wellvertex stream.
as bump mapping and displacement mapping, are functions of

The input vertex stream is parceled out to the vertex processors,
and the resulting output is reassembled and fed to the pool of pixel
processors, which are not discussed in this article.

An important aspect of this model is that random memory access
is extremelyiimited (to these registers). Large amounts of vertex
data are accessed by streaming from video RAM rather than being
accessed randomly system.

One reason GPUs and functional programming fit together is that
GPUs inherently compute staged functions. Vertex computations
depend on “constant” registers and on vertex registers. Values held
in the constant registers may be set at most once per stream of ver-
tices, being held constant among vertices in a stream. Typically
these constant registers contain both actual constants and time-

Computer graphics math makes extensive use linear algebra, and irvarying values. Thus any vertex computation may be cast as a cur-

particular matrices for representing linear, affine, or projective spa-
tial transformations. There are actually competing conventions for
transforming vectors with matrices using matrix multiplication. In
one, the matrix is on the left and the vector is a column, while in
the other, the vector is a row and the matrix is on the right. Trans-
formations are composed by multiplying the matrices, taking care
with the order, consistently with the pre-multiply or post-multiply
convention. With a functional foundation, one can simply let the
transformations be functions that happen to be linear, affine or pro-
jective, or might be arbitrary spatial deformations, such as bends,
twists, or tapers.

3 Graphics processors

Vertigo targets the DirectX 8.1 vertex shader model shown in Fig-
ure 1, which is taken from [9]. This model and a multiprocessor

ried function:
vc:: MeshData— (VertexData— Vout)

Given such a computatiovc, mesh datand, and a streansvd of
vertex data, the vertex processor hardware simply computes

map(vc md svd

4 Geometry

3D graphics cards mainly render vertex meshes, with each contain-
ing information such as 3D location, normal vector, and texture co-
ordinate vertices. The new breed of graphics processors, being pro-
grammable, are very flexible in the type of streams they can operate
on and what computations they can perform. Vertigo concentrates
on synthetic (or “procedural”) geometry, from which vertex meshes

rE— LEE|

are extracted automatically and efficiently. The main type of inter-
esgt is a (parametric) surface, which is simply a mapping f&fhio

%3,
type Surf = ®2 — R3
type R2 = (R, R) : —
type R3 = (R, R, R) . ‘

By convention, during display, surfaces will be sampled over the
2D interval[-1/2,1/2] x [-1/2,1/2].

At this point, the reader may safely interpftas synonymous with
Float. The actual meaning a_ is expressionsver Float, so that
the implementation can perform optimizing compilation (Section 6) »
and symbolic differentiation (Section 8). =

- . . Figure 2. rippleS 5.7 0.1
Now one can start defining surfaces directly. For instance, here are

a unit sphere and a cylinder with a given height and unit radius.

sphere: Surf out;
sphere(u, v) = (cosB-sing, sinB-sin@, cos
F\)Nhe?f;e :) 2. (T[u ¢ ¢ 9 freqgMag:: Surf — (R, R) — Surf
Q=T0-V freqMag f (freq, mag = (mag) o f o (freq)

cylinder:: & — Surf Combining, we get the surface shown in Figurk 2.

cylinder h(u, v) = (cos®, sin6, h-v) rippleS:: R2 — Surf
where6 = 2-11-u rippleS= hfSurf o freqMag ripple

Note that as1 andv vary between-1/2 and /2, 6 varies between The definition offreqMaguses operators to scale the incomiR§

—mandT, while @ varies between-1t/2 andr/2 (south and north and outgoing®? points. These operators belong to the vector space

poles). type class defined as follows, for a scalar tg@nd a vector space
vovers. (The actual operator for scalar multiplication is™.)

More powerfully, using higher-order functions, we can construct

surfaces compositionally, as in the method of generative model- classFloating s= VectorOf s \{ v— swhere
ing [12, 11]. The next several examples introduce and demonstrate () us—v—v
a collection of useful combinators for surface composition. (<>)uv—v—s —— dot product

The general type dfegMagthen is as follows.

4.1 Helght fields freqMag:: (VectorOf si vj VectorOf so vp
)))) = (Vi — v0) — (si, s0) — (Vi — vO)
“Height fields” are simply functions fronk2 to ®, and may be
visualized in 3D in the usual way: The constraints here say that the typéandvo are vector spaces
)) over the scalar fieldi andsao, respectively.
type HeightField= R% — ®_
As another surface example, here is a wavy “eggcrate” height field:
hfSurf:: HeightField— Surf]]
hfSurf field(u, v) = (u, v, field (u, v)) eggcrate: HeightField
eggcrate(u, v) = cosU usinU v
A simple definition produces ripples: The definition ofeggcrate(u, v) above fits a pattern: the result
ripple :: HeightField comes from sampling one function @and another at and com-
ripple = sinU o magnitude bining the results. Since this pattern arises in other examples, we
abstract it out.
HeresinU is a convenient variant of th&n function, normalized)
to have unit period. (The typeset code examples in this paper use eggcrate= cartF (-) cosU sinU
an infix “-” operator for regular multiplication and for scalar/vector

multiplation introduced below.) cartF :: (a—b—c)— (u—a)— (v—Db)
. — (uv)—c
cosUsinU:: R — R, cartFopf g(u,v)=fu‘op gv

cosUB = cos(2-11-0)
sinU@ =sin(2-11-0)

1The GUIs shown in this paper are automatically generated
Now let's add the ability to alter the frequency and magnitude of based on the type of a parameterized surface and a small specifi-
the ripples. This ability is useful in many examples, so abstract it cation of the labels and ranges for parameter sliders.

Figure 3. eggcrate2.6 0.23

Now add control for frequency and magnitude of the waves, to get

the surface shown in Figure 3.

eggcrateS: ®R2 — Surf
eggcrateS= hfSurfo freqMag eggcrate

4.2 Sweeps

Another surface composition technique is using one curve to

“sweep” another.

type Curvey = R — R2
type Curves =R — &

sweep: Curve; — Curve; — Surf
sweep basis scurv@, v) = basis u scurve v
Or more succinctly,
sweep= cartF (+)
For instance, a cylinder is a circle swept by a line.
cylinder h= sweep(addZ circlg (addXY(h-))

The helper functionaddXYandaddZ simply increase the dimen-
sionality of a value iR or R2 respectively, inserting zeros. For
c<)2nvenience, they actually apply to functions that prod&cer
Re.

addX addY, addZ:: (a— R?) — (a— R°)
addX= IIft1 ()\(y7 Z) (07 Y, Z))
addY = lifty (A(x, 2) — (x, 0, 2))
addZ = lifty (A(x,y) — (x,y,0))

addYZ addXz addXY:: (a— R) — (a— R3)
addYZ= lifty (Ax — (x, 0, 0))
addXz= lifty (Ay — (0, y, 0))
addXY= lifty (Az— (0, 0, 2))

The handy “lifting” functionals are defined as follows:

liftuhfux = h(f1x)
|if[2 hfl f2X = h(fl X) (fz X)
=h(f1x) (f2x) (f3x)

|if’[3 h fl f2 f3 X
We can define theircle curve out of lower-dimensional functional
pieces as wel:

circle :: Curvey
circle = cosU*pairF* sinU

pairF :: (c—a) —
pairF = lifty (,)

(c—=b)—(c—(ab))

4.3 Surfaces of revolution

Another commonly useful building block is revolution of a curve.
To define revolution, simply lift the curve int®2 by adding a zero
Z coordinate, and then rotate around ¥haxis.

revolve:: Curve, — Surf
revolve curveu, v) = rotY (2-1t-u) (addZ curve ¥

The functionrotY is an example of a 3D spatial “transform”. Tra-
ditionally in computer graphics, transforms are restricted to linear,
affine, or projective mappings and are represented by matrices. In
a functional setting, they may more simply and more generally be
functions:

type Transform = R, — R,
type Transform = R2 — R2
type Transformy = 3 — R3

To rotate a 3D point about the axis, it suffices to rotatéx, z) in
2D and holdy constant:

rotY :: R — Transform
rotY 6 = onXZ (rotate 0)

rotate:: R — Transform
rotate® (x,y) = (x-c—y-s,y-C+X-9)
where ¢ = cos
s=sinB

onXY, onYZ onXZ:: Transform — Transforny

onXY f(x,)2 7) = (x’ Y., 2)
where (X, y') =f (x,)
onXZ f(x,y,2) = (X Y, Z)
where (X, Z) =f (x, 2)
onYZ f(x,y,2) = (X, }/ 7)
where (Y, Z) =1 (y,2)

Spheres and cylinders are surfaces of revolution:

sphere = revolve semiCircle
cylinder h=onZ (h-) o revolve(Ay — (1,y))

A semi-circle is just a circle sampled over half of its usual domain
([-1/4,1/4) instead of —1/2,1/2)):

semiCircle= circle o (/2)

2Building higher-dimensional shapes out of lower ones is one of
the themes of generative modeling [12, 11].

Flgure 4. torusFrac1.5 05 0.8 0.8

mag

[o731

Figure 5. eggcrateCylindeB.8 4.0 0.23

The torus is a more interesting example. It is the revolution of a

scaled and offset circle.

torus:: . — R — Surf
torus sr cr=revolve(const(sr, 0) + const cr-circle)

Note that the addition and multiplication here are working directly
on 2D curves, thanks to arithmetic overloading on functions and on
tuples.

instanceNum b=- Num(a — b) where

(+) = liftz (+)

() =lifty (*)

negate = lift1 negate
frominteger= consto frominteger

— etc.

“displacing” a cylinder using the eggcrate height field.

eggcrateCylinder h fra-
displace(cylinder h (freqMag eggcrate fin

The definition of displacement is direct:

displace:: Surf — HeightField— Surf
displace surf field= surf + field- normal surf

Note that the surface, its normal, and the height field are all sampled
at the same point iR2. The displacement vector gets its direction
from the surface normal and its distance from the height field.

Normals are computed by taking the cross products of the partial
derivatives.

normal:: Surf — Surf
normal= normalizeo crosso derivative

As described in Section 8, Vertigo computes derivatives exactly, not
through numeric approximation.

Vector normalization scales to unit length, and is defined indepen-
dently of any particular vector space.

normalize:: VectorOf sv=v—v
normalize v=v/magnitude v

magnitude: VectorOf sv=v —s
magnitude v= sqrt (v<->V)

The type ofnormalis actually more general:

normal:: (Derivative c vec vecs
, Cross vecs vec
, VectorOf s vep

= (c—veg — (c—veQ

The constraints mean that (a) the derivative @f-a vecfunction

has typec — vecs (b) the cross product of gecsvalue has type

veg and (c) the typeecis a vector space over the scalar fisldn

theSurf cases= %, c = 2, vec= K3, andvecs= (%3, R3).

The inferred type oflisplaceis also more general than given above.
displace:: (Num(c — veg

, Cross vecs vec

, Derivative c vec vecs

, VectorOf s vec

, VectorOf (c — s) (c — veq)

= (c—veg — (c—s)— (c—veQ

For instance, the cross product of a single 2D veptoy) is the 2D
vector (y, —x), and thedisplacefunction may be used to displace
one 2D curve with a “2D height field” (of typ® — R). In this
cases= R, c= R, vec= R2, andvecs= R2.

To make the example more interesting, add parameters to scale

down the surface parametarsandv. The result is an incomplete
torus, as in Figure 4.

torusFrac sr cr cfrac sfrac=
torus sr cro (-(cfrac, sfrac))

4.4 Displacement surfaces

As a final example of surface construction, Figure 5 results from

5 Shading

Shading languages began with Cook’s “shade trees”, which were
expression trees used to represent shading calculations. The most
successful shading language has been RenderMan'’s [5, 14].

One interesting aspect of RenderMan’s shading language is that
the data it uses comes in at different frequencies (surfaces patches,
points on surfaces, and light sources) . As an example, here is a def-

inition of a diffusely reflecting surface [14, page 335] (simplified). direction. Any given shader will decide what to do with this infor-
mation. Attenuation and relation of light position (if finitely distant)

surface to surface position are already accounted for.
matte (float Ka, Kd)

{ type Lightinfo = (Color, N3)
Ci = Cs * (Ka*ambient () + Kd*diffuse(N));
} For example, here are definitions for simple directional and point
lights (without distance-based attenuation):
In explanations of this shading language, invocations of a param-

eterized shader likeatte are referred to as “instances”, and the dirLight :: Color — N3 — Light
parameters likea andxd are referred to as “instance variables”. A dirLight col dir = const(col, dir)
given instance instance is “called” perhaps thousands or millions of

times for different sample points on a surface. These “calls” to a pointLight:: Color — %3 — Light
shader instance supply information specific to surface points, such pointLight col lightPos p=

as surface normalf and surface colorci). “It may be useful to (col, normalize(lightPos— p))

think of a shader instance as an object bundling the functionality of
the shading procedure with values for the instance variables used by

the procedure” [14, Chapter 16]. Shader calls read from and write ;here ettre threfe_dfifferer:_t kinds gf. sht?derﬁ, g_orresponding E(\)/_the
to special global variables. ree stages of information used in the shading process. “View

shaders” depend only on viewing environment; “surface shaders”
depend additionally on surface point info; and “light shaders” de-
pend additionally on a single light info. View shaders are not par-
ticularly useful, but are included for completeness.

There is a third frequency of evaluation as well, namely the contri-
bution of several light sources per surface point. Here is a defini-
tion of a diffuse lighting function, commonly used in shader defini-

tions [14, Chapter 16]. Rather than restricting to a single resulting value type Gledor, it

color will be useful to generalize to arbitrary result tyges:
diffuse (point norm)

i type VShader a= ViewEnv— a

type SShader a= VShaderSurfPt— a)
type LShader a= SShade(Lightinfo— a)

color C = 0;
unitnorm = normalize (norm);
illuminance(P, unitnorm, PI/2)
C += Cl * normalize(L).unitnorm;
: return C; 5.2 A*“shading language”
Given the model above, one could simply start writing shaders as
functions. Doing so leads to awkward-looking code, however, due
to the explicit passing around and extraction of view, surface point,
and light information. This explicit passing is not necessary in the
. RenderMan shading language thanks to the use of global variables.
5.1 The essence of shading languages Fortunately, we can keep our function-based semantic model and
remove the notational clutter. The trick is to build shaders using
To create a semantic basis for shaders, consider the information thahigher-order building blocks, and define overloadifgs.
a shader has access to and what it can produce. Some information
comes from the viewing environment, some comes from a point on First define extractors that access information from the view envi-

Theilluminance construct iterates over light sources, combining
the effects of its body statement, using light-source-specific values
for light color (1) and direction 1).

the surface, and some from a light source relative to that point. ronment:
A viewing environment consists of an ambient light color, an 3D ca :VShaderColorca (c,-,-)=c
eye position, and a collection of light sources: eye :VShader\z ;eye (. e _)=e
lights:: VShaderLight]; lights (-, _, 1) =1
type ViewEnv= (Color, %3, [Light])
Similarly for surface point info:
Information about a surface at a point includes the point's posi-
tion, a pair of partial derivatives (each tangent to the surface at that pobj:: SShaderg ® s pobj-(p,-,-) =p
point), and an intrinsic color: dp :SShade(®3, ®3);dp _(.d,_)=d
cs ::SShaderColor ;cs _(,,.,c) =c

type SurfPt= (R3, (%2, 3), Color)
Using the full derivative (Jacobian matrigp, we can easily define

For our purposes, a light source is something that provides light in- the two partial derivatives by selection and surface normal vector
formation to every point in space (though to some points it provides

blackness), independent of obstructiéns.

4In the Renderman shading language, shaders do not have re-
turn values at all, but rather assign to globals, and shaders are not
Light information delivered to a point consists simply of color and allowed to call other shaders. There are also “functions”, which
return values and can be called by shaders and other functions.

3In a more sophisticated model, a light source would probably 5As discussed in Section 5.3, one could instead use implicit pa-
also take into consideration atmosphere and solid obstructions. rameters.

type Light = ®3 — LightInfo

by cross product.

dpdu dpdv:: SShadetg3

ViewDep SurfDep andLightDep requiring instead that all of the
implicit parameters be mentioned explicitly at every use. For ex-
ample, instead of the simple types foandndotLabove, we would

dpdues=fst(dpesg have something like the following.
dpdves=snd(dpe 9

n: (2 (R3, R%)) = Na
n:: SShader i n = normalize(crosd)

n = normalize(cross dp

ndotL:: (2d:: (R3, R3), 2 R3) = RS

Light shaders need extractors as well: ndotL— n<.>7

c
d

cl:: LShader Color cl __(c,) =
| ::LShader DIBE; |l __(_,d)= Note how theseémplementation®f n and ndotL show through in

. . i . their types. It gets worse from there: as more and more pieces
It is easy to precisely define a counterpart to RenderMan's qf the view, surface point, and light contexts are used, the explicit
illuminance construct. To turn alight shader into a surface shader, |t of implicit parameters grow. Fortunately, GHC'’s type checker
simply iterate over the light sources in the viewing environment, a5 improved to handle definitions likdewDepand the others,
apply to the surface point to get the required light information, and g4 we were able to hide all of the implicit parameters. The actual

sum the result§.

illuminance:: Num a=- LShader a— SShader a
illuminance Ishader @(_, _, Is) s@(p, -, -) =
sum(Ishader v glight p) | light < Is]

Sometimes we need to mix light and surface shaders, which we do
by lifting a surface shader into a light shader. For instance, the
dot product between normal vector and light direction is commonly

used in shaders.

ndotL:: LShader®,
ndotL = toLS n<->|

The dot product here is on functions.
ThetoLSfunction simply adds an ignored argument:
toLSssvs=ssvs

This function is actually overloaded to work on view shaders and

definitions look like the following.

dp:: SShadefR3, R3)
dp= 2dp

n:: SShadetR3
n = normalize(cross dp

ndotL:: LShader®g3
ndotL= n<->|

The improvements made to GHC for supporting such convenient
definitions are not present in Hugs, which we also wanted to use,
so for now, Vertigo has both the explicit and implicit parameter
approaches. Since the latter is more convenient, we will use it for
the examples in the next section.

non-shaders as well, adding one or two ignored arguments, respec-

tively. Similarly, there are overloadedESandtoSSfunctions.

5.3 Implicit parameters

We also implemented the shading language using implicit parame-
ters [7]. The following definitions describe dependencies on view,
surface point, and light information, abstracting out the details:

type ViewDep a=

(7ca:: Color, 2eye:: ®2, Aights:: [Light]) = a
type SurfDep a =

(?cs:: Color, 2pobj:: ®3, 2d :: (R3, R3)) = a
type LightDep a= (7l :: Color, A :: %) = a

type VShader a= ViewDep a
type SShader a= VShaderSurfDep a
type LShader a= SShade(LightDep g

This formulation eliminates the need fwlLS and thelift_i func-
tions used in the explicit function formulation. It is, however, rather
demanding of the type system. The original implementations of
implicit parameters in GHC did not support type definitions like

6A more sophisticated renderer might use a different set of light
sources, synthesized from the environment’s lights, simulate area
light sources and inter-object reflection and occlusion.

5.4 Sample shading specifications

Given this simple shading language, we can define some common
shaders. The simplest (other than pure ambient or pure intrinsic) is
pure diffuse. It usesa<->| to scale the light color, and sums over
all light directionsl.

diffuse:: SShader Color
diffuse= illuminance(ndotL. cl)

We then make a weighted combination of pure ambiea}t &nd
diffuse:

ambDiff :: ®2 — SShader Color
ambDiff (ka, kd) = cs- (ka- ca+ kd- diffuse

To make surfaces look shiny, we turn to specular shading, which is
independent of intrinsic color.

specular:: ® — SShader Color
specular sh= illuminance((vdotResh) - cl)

vdotR:: LShader®
vdotR= eyeDir<->reflect I n

eyeDir:: SShader i
eyeDir= normalize(eye— pobj)

The pictures in Section 4 are made using a weighted combination The set of primitive operators reflect the GPU instruction set:

of ambient, diffuse, and specular shading.
basic:: ®* — Shader Color
basic(ka, kd, ks, sh) =
ambDiff (ka, kd) + ks- specular sh

Many other shaders may be defined, e.g., brushed metal.

6 The GPU compiler

Vertigo is implemented as an optimizing compiler, in the style of

Pan [2]. The main difference is that Vertigo targets a modern graph-
ics processor architecture, rather than a general purpose CPU in-

struction set.

The target GPU architecture and instruction set have some unusual

traits that make it challenging and interesting to compile into correct
and efficient code.

e Most operations work on quad-floats.

e Operand registers may be negated and/or “swizzled” for free.
Swizzling is extraction and rearrangement of scalar compo-
nents to form a new vector, possibly omitting or replicating

components. The same component may be used more than

once to form an operand.

e There are no literals in the assembly code. All literals must be
loaded into constant registers (also quad-floats).

e At most one constant register and one vertex register can be

accessed per instruction.
e There is no conditional instruction.
e There is a multiply-add instructiom(b+-c).
e There are no trig functions, so they must be approximated.

6.1 Frontend

The front end of the Vertigo compiler is similar to that of Pan [2],
with the following main differences:

e The data types supported are 1- to 4-tuples of 32 bit floats.
e The primitive operations are altered to target GPUs.

e Many of the algebraic rewrites use associative-commutative
matching.

The programming interface is a set of statically typed definitions
that make calls to a layer of dynamically typed “smart construc-
tors”, as in Pan [2]. The typ& used above refers to statically
typed, float-valued expressions.

The smart constructors perform bottom-up algebraic simplifications

and build expressions, which may be literals, variables, applications

of primitive operators, or let-bindings:

data Exp= LitVec Vector
| VarId Type
| Apply Op[Exp
| Let[(ld, Exp)] Exp

type Vector= [Float]

typeld = String — variable name

data Op = Add| Mul | Mad | Max| Min | Sge] St
Mov

Rcp| Rsq| Log | Exp

Dp3 | Dp4

Expp| Logp| Frc

Negate Swizzl€gnt] | MkVec

Frac

Cos| Sin

Notes:

e The first line (add, multiply, multiply-add, max, mig, and
<) contains SIMD operations: The last two return a vector
containing floats that represent booleans, using zero for false
and one for true. All are binary excelglad, which is ternary
(a-b+c).

Mov is the unary identity operator.

The third line (¥/x, 1//X, logzx, and Z) contains operations
that work only on scalar values (presumably because SIMD
execution would use too much time or silicon).

The fourth line contains 3D and 4D dot product operations,
computing scalar results.

Negation and swizzling are pseudo-operations. They are inte-
grated into each generated instruction but are logically sepa-
rate at this level. Veector construction is also a pseudo-op.

TheSinandCosoperators are introduced but replaced later by
approximations. The main reason is to allow computation of
derivatives before approximation rather than after, resulting in
a more precise approximation of the derivative.

6.2 Smart constructors

The smart constructors invoked by the statically typed interface dif-
fer from those in Pan because of the target architecture.

For instance, as the only comparators arand <, other boolean
operators must be synthesized. For clarity, we state the translations
in concrete syntax, though the actual implementation does pattern
matching on thé&xp.

ee=e=e>eAe>e
a7 =e<eVe<eg

a>b=b<a
a<b=b>a

not(e, < &) =€ >e&
not(ep>e) =e <&

Although the statically typed layer haBBaoltype, the GPU archi-
tecture simulates booleans via floating point numbers, usthépt
Trueand Q0 for False Thus,

notc=1-c
(A) =min
(V) = max

if cthenaelseb=c-a+notc-b

Note in this last definition that-then-elseis strict” refers a sequence of & y, z, andw components (witlh compo-
nents ife:: R").

6.3 Literal extraction - : iy .
Similarly, there are helpful properties for rewriting swizzlings. For

Because the target instruction set does not support literals, the com 2!l SIMD operationsop,

piler must extract literals and allocate them into the constant register

set. Extraction proceeds in three phastiscoverthe literals pack (0P & ... €n).SWiz=0p (€1.5WiZ) ... (en-SWiZ

efficiently into a constant register file, angplacethe literals with Swizzlings of explicit vector constructions get swizzled syntacti-
variables (possibly swizzled and negated). cally, e.g.,
extractLiterals:: Int — Exp— (Exp, RegFile (a, b, c).xzyz= (a, c, b, c)
extractLiterals numRegs exp
(replace regs expegs) Composed swizzles are composed syntactically, e.g.,
where
regs= pack numReggdiscover exp (eyzw) .yx=ezy

When a negation or swizzling cannot be pushed into an existing
operator, we simply introduce a new identity operabdoy) to push
it into, which will cost an additional instruction.

discover:: Exp— [Vectol
pack ::Int— [Vectof — RegFile
replace :: RegFile— Exp— Exp

. CNF conversion also turns combinations of multiply and add into
type RegFile= [Vectod singleMad applications.
6.4 Codegen normal form .

g 6.5 Assembly language modeling
In preparation for code generation, the Vertigo compiler rewrites o))))
expressions into “codegen normal form” (CNF) designed to reflect An assembly program is simply a list of instructions. All instruc-
what the processor can do. tions are operator applications (evgiov) and contain a comment,
in which the compiler inserts a binding in CNF.

NF i f th h that:
CNF is a subset of thExptype such that type Asm = [Inst]

e There are no literals. data Instr = PrimOp Op Des{Sourcé String

* Operators other thaklkVecmay only be applied to only to A register has a register class and index and a friendly name
“operands”, which are swizzled and possibly negated vari-

ables. data RegClass= Regln| RegConst RegTemp

e Swizzling, negation, and variables show oply in these | RegAddr| RegOut

operands. (If necessaryMov (identity) operator application
ispinserted,§ Y () op PP data Reg= Reg RegClass Int String

Variables will correspond to readable registers, possibly swizzled Source registers may be swizzled and negated. The register may
for layout. Swizzling and negation get rewritten away whenever not be an output.
possible, by using distributive properties and pushing them into

operand position where they cost nothing. data Source= Source NegSwiz Reg
For negation, the following distributive properties are u8ed: data NegSwiz= NegSwiz Bool Swizzle
typelndex =Int
—(-9) a type Swizzle = [Index

—(a+b) i (—a)+(—b

Each destination has a register and a layout saying which floats
within the register get used. The register may not be an input.

—(a-b) =(-a)-b data Dest = Dest Reg Layout
—(1/a) =1/(-a) type Layout= [Inde¥ ~ — distinct
—(a<->b) =(—a)<->b

—(e1,...,en) = (—€1, ..., —€n) 6.6 Code generation

—(eswig = (—e).swiz

Given an expression in CNF, code generation is fairly straightfor-

The last rule refers to negations of swizzled expressions. sieie ward. Because GPUs have no random memory access, optimized
register allocation is particularly important. The Vertigo compiler

"More modern GPU architectures do support booleans and non-uses a simple functional implementation of the traditional dynamic
strict conditionals. programming technique [1].

8These rewrites do not need to be applied recursively. One ap-
plication suffices to move the negation to operand position. Recall A “code generator” tells how much free register space is needed (in
that<-> is dot product. floats) and how to generate code. The free space requirement will

be used for argument reordering.
type CodeGen= (Int, Gen)

A Gengenerates code for a given destination, an extra swizzle re-
quired to accommodate the destination layout, a mapping from vari-
ables to sources, and a pool of free temporary registers.

type Gen= Dest— Swizzle— SourceEnv— Pool — Asm

type SourceEnv= [(Id, Sourcg] ~ — assoc list

Code generation then maps an expression in CNF itodeGen
codegen: CNF — CodeGen

Thanks to CNF, there are only two cases: (a) applications of oper-
ators to optionally negated and swizzled variables, andetbgx-
pressions.

The application case is simple: for each argument, get the source
bound to the variable in the environment, and compose the contex-

tual negation and swizzle with the source’s to form the instruction

wheresortF sorts based on a given key extractor function:

sortF:: Ord k= (a— k) — [a] — [a]
sortF key=
sortBy(Aa b — key a'comparé key b

To determine the number of free registers needed folletrexpres-

sion, we need to know (a) the space tied up at each stage (sum of
the sizes of values saved so far), and (b) the amount of free space
needed for each binding.

savedRs = scanll (+) (
0 : map type@size typep
nr = maximum(

zipWith(+) (nrs-+[nrb]) savedRs
(nrs,geng = unzip cgs
(nrb, genh = codegen body

The code generated for thet expression comes from code gener-
ated for the bindings followed by code for the body.

gen dest swiz env poel
asm+-genb dest swiz ehpool
where
(asmenv, pool) =
genBindings vars types gens env pool

Code generation for bindingg€nBindingsworks simply by loop-

operand. Then use the destination layout as a mask for the resulting through the (now reordered) bindings, allocating space from the

register.

There is one tricky point arising from layout. Variables smaller
than ®* may require swizzling on write, which is not supported
in general by the processor architecture. Howeveraforost all
operations, a write swizzle can be correctly simulated by a combi-
nation of write masking and argument swizzling. For SIMD ops,
it suffices to swizzle each argument correspondingly. For scalar-

producing ops, the same scalar result is written to all components

of the output, so write swizzling is just write masking. The remain-
ing instructions write to all four components, and so do not pose

a problem, unless a non-obvious layout were used. To handle this

concern, all four-float allocations are given the identity layout, so
that unpredictable layout swizzling cannot happen. If we were not
so lucky with the instruction set, we could inseftfav instruction
that swizzled its argument as necessary.

All register allocation is handled by tHet case. For am-ary let,

there aren+ 1 stages of evaluation: one for each right hand side
and one for the body. The register use will be the maximum of the
register uses over the n+1 stages. At each stage, we have to preser

the registers used to hold the results of previous stages. Since late
stages have the added burden of preserving earlier results, we rear-

range the bindings to put the less register-intensive bindings later,

thus minimizing the maximum register usage over the stages. We

cannot move the body, since it depends on all the bindings.

codegen(Let bindings body= (nr, gen
where
(vars types cgs) =
unziB (reorder (zip3 vargy
(map typeOf expg
(map codegen expy)
(vars, expp) = unzip bindings
Reordering just sorts by decreasing register use:

reorder= sortF (A(_, _, (nr, _)) — —nr)

temporary registers, and recursively generating code for the right
hand sides.

7 Sample optimizations

In this section, we show examples to give a flavor of the kinds of
optimizations that Vertigo performs in practice.

7.1 \ector normalization

It is common to need to normalize vectors (i.e., scale them to unit
length). One use is the construction of normals for shading (Sec-
tion 5.2) and for displacement surfaces (Section 4.4). A painful
tradeoff in graphics programming is whether utility functions like
normal computation should normalize their vector arguments or as-
sume them to have been normalized. Since execution speed is so
important, the choice is often made to assume pre-normalization,
so that the normalization can be avoided in a few cases. Unfortu-

\;éately, this choice encourages one of the classic computer graphics

rogramming bugs, which is failure to normalize before calling, ei-
her due to forgetting requirement or falsely assuming it to hold.

With a sufficiently aggressive optimizer, one might hope to elimi-
nate the pre-normalization requirement and still get efficient code
when the actually argument has been normalized. That is, the
compger should perform the following optimization (interprocedu-
rally).

normalize(normalize ¥y = normalize v

Rather than wire this domain-specific optimization into an other-
wise domain-independent compiler, Vertigo performs simpler and
more general rewrites. Given the definitionmmfrmalizefrom Sec-

9There may be other, subtler, sources of redundant normaliza-
tion.

tion 4.4),normalize(normalize y expands to In CNF, the body of this definition is

normalize y'sqrt (normalize w->normalize vy let g = v.yzx- u.zxyin
mad (u.yzx (v.zxy) (—0q)

Assumingu andv are allocated in the first three floats of registers
(v/sart (v<->V))<->(v/sqrt (v<->V)) r0 andr1 respectively, and the result should go into the first float
of r2, Vertigo produces the following two instructions:

The sub-expressiomormalize w->normalize vexpands to

The following rewrit%s apply, with ands ranging over scalars and
uandv over vectors* mul r2.x, rl.yzx, r0.zxy

mad r2.x, r0.yzx, rl.zxy, -r2.x

v/s =(1/s)-v

(s-u)<->v =s-(U<->V) .

(1/r)-(1/s) = 1/(r-9) 8 Derivatives

sqrt r-sqrt s=sqrt(r-s) o))

sqrt(s-s) =s The derivative operator maps functions to functions. In general,
the derivative of a function of type — B is a function of typex —

The resultis L(a;B), where ‘L(a;B)” means thdinear subset ofa — 8 [13].

These linear maps are typically represented by real numbers, vec-

(V<->V)/(v<->V) tors, matrices, etc, depending anand . Because Vertigo uses

these data representations rather than functions for derivative val-

which simplifies to 1. The overall expression then becomes ues,derivativebelongs to a multi-parameter type class:

normalize ysqrt 1 classDerivativea 3 Imap| a B — Imapwhere

which simplifies tonormalize v derivative:: (a — B) — (a — Imap)
As a particularly fortuitous example of this optimization and oth- Whena =R, L(a;P) can be represented t for vector space
ers, considenormal sphereWithout optimization there are 28 ad- typesp.

ditions, 50 multiplications, and four trigopnometry operations. With instance (DDeriv b, Substable p=

optimization there are two additions, four multiplications, and four Derivative® b b\7/vhere

trigonometry operations. In fact, the result is identicakphere

itself, so the savings are compounded when rendering a sphereys for instance 8 = &3, then the derivative values are represented
which requires the surface and its normal. as vectors of three scalar-valued “partial derivatives”.

Whena =aj x --- x ap, L(a; B) can be represented gy x - - - X Y,

7.2 Cross products wherey; representg (aj;).
instance(Derivativeas B y1

, Derivativeas B yz) =
Derivative(ay, 02) B (y1, Y2) where

The previous example is architecture-independent. The definition
of 3D cross products, used also in normal computation, gives rise
to an example of architecture-specific optimization.

Similarly for triples, etc. Wher3 happens to be a tuple type, the
resulting derivative value representation is a tuple of tuples and co-
incides with what is known as a “Jacobian matrix”.

(x) :: (Num s VectorOf s(s, s, 9))
=(s,5,5) —(s,5,5 —(559)
(a1, by, c1) x (ag, bz,) =

(br-C2—bp-C1,C1 2 —Cp- a1, 8-y~ 2 by) The Substableype class contains types that support “substitution”

Automatic vectorization performs the following transformation for Of an expression for a variable. In the Vertigo implementation, the

all SIMD operationp: Substablénstances ar& and tuples oSubstableypes. Differen-
tiation of functions works by applying the function to one or more
(opag by ...,opapby....,...,opanby...)= variable expressions, symbolically differentiating the resulting ex-
op(ag, ap,...,an) (b1, b, ..., bn) ... pression(s), and turning the result back into a function that substi-
tutes for the introduced variables.
This rule applies four times in the definition gf(since subtraction
is represented by addition and unary negation), yielding TheDDeriv class supports differentiation with respecvigiables
Itincludes® (expressions ovefloat), and tuples oDDeriv types.
(a1, by, €1) x (a2, by, C2) = The R case simply removes the statically typed wrapper, reveal-
(b1, €1, a1) - (C2, @2, bp) — (b2, €2, 82) - (€1, &1, 1) ing an underlyingExp (Section 6.1), where the actual, recursive

symbolic differentiation algorithm takes place. It is critical for effi-
ciency to memoize that algorithm, in order to avoid the usual prob-
lem of time and space blow-up for symbolic differentiation. This
differentiation algorithm is very simple (Figure 8).

Note that each constructed vector is a rearrangment of one of the
vector arguments tex. That fact means that the vectors are just
swizzlings:

U X V= U.YyZX V.ZXy— V.yzX- U.ZXy
9 Further work

19The Vertigo compiler matches for these rules modulo associa- While the Vertigo compiler does a good job of algebraic simplifi-
tivity and commutativity of multiplication and dot product. cation, reducing instructions generated and registers used, there is

ederiv:: Id — Exp— Exp
ederiv v exp=d exp
where
d = memo nd
— nd is the non-memoized d

nd e@(LitVec.) = zero(typeOf &

nd(VarvVty)| v=V =onety

nd (Var _ty) =onety

nd (Apply Add[u, v]) =du+dv

nd (Apply Mul|u, v]) =u-dv+v-du

nd (Apply Rcplv]) —dv/(V2)

nd (Apply Sin[u]) cosudu

nd (Apply Cos[u]) —sinu-du

nd (Apply Rsqu]) —d u-rsqrt u/(twoF- u)

nd e@(Apply Exp[u])
nd (Apply Log|u])
Apply Negatdu])

e-d u-logTwoF
recip u-logTwoF-d u
—(du)

Apply MkVeces =vecL(mapd e}

Apply (Swizzle §[u]) = swizzle d u)

Apply Frac[u]) =du

Apply DB [u, V]) =dp3u(dv)+dp3v(du)

Apply Dp# [u, v))
Apply Slt[u, v])

Apply Sgdu, v])

=dpdu(dv)+dpdv(du)

= zero(typeOf y

= zero(typeOf y

Apply Max[u, v]) =ifE (u>v) (du) (dv)

Apply Min[u, v]) =ifE (u<v) (du)(dv)
Figure 6. Symbolic differentiation

nd (
nd (
nd (
nd (
nd (
nd (
nd (
nd (
nd (
nd (

much room for improvement.

One improvement would be connecting algebraic simplification
with register allocation. For instance, the automatic vectorization
transformation mentioned in Section 7.2 replaces one vector con-
struction withn of them, and is only beneficial when the vector
constructions become register swizzles, which are free. More gen-
erally, it is important to coalesce scalar operations into vectors oper-
ations where possible, but not at the cost of moving scalars into vec-
tors at run-time. More sophisticated analysis could allocate scalars
in the same vector at compile time, when doing so would allow re-
placing several scalar operations with vector operations. Since the
same scalar may be used in more than once, there may be competi
tion among different potentially vectorizable uses of a given scalar.

A related issue is the tension between optimization and sharing.
Consider the definition of-then-elsein Section 6.2. Optimizing

not ccould easily break the sharing of part of the computatiogy of
which may more than defeat the optimization.

Newer generations of graphics vertex processors have more power-

ful instruction sets, including looping, predicated instructions, con-

ditional branching, boolean and integer registers. They also have
larger register sets and program length bounds. These advance
ments introduce opportunities and challenges for compilation. New

pixel processors are also much more general and now worth target-

ing. Another general challenge is partitioning computation between
vertex and pixel processors.

10 Conclusions

Programmable multiprocessor architectures have finally reached
the masses in the form of modern graphics cards. This is a great

puter graphics tend to be functions. This paper describes Vertigo,
a functional language for 3D shape and shading and an optimizing
compiler that targets graphics processors. The language has simple,
transparent semantics in terms of first-class functions. Higher-order
programming provides powerful abstractions that allow surfaces to
be composed from simpler components, often of lower dimension.

Shading languages since Renderman’s have had a rather peculiar
execution model, explained as “instancing”, “calling”, and iteration
over light sources. As we have shown, execution can be explained
simply as curried functions having natural staging: shader-specific
parameters (instancing), view and surface point information (call-
ing), and per-light information.

The Vertigo system runs on Windows, with DirectX 9
and the .NET framework. It may be downloaded from
http://conal.net/Vertigo.

11 References

[1] A. V. Aho, R. Sethi, and J. D. UllmarCompilers: Principles,
Techniques, ToolsAddison-Wesley, 1986.

[2] C. Elliott, S. Finne, and O. de Moor. Compiling embedded
languagesJournal of Functional Programmind.3(2), 2003.
http://conal.net/papers/jfp-saig.

R. Fernando and M. J. Kilgardlhe Cg Tutorial: The Defini-
tive Guide to Programmable Real-Time GraphicAddison
Wesley, 2003.

P. Hanrahan. Why is graphics hardware so fast?
published talk, 2002http://graphics.stanford.edu/-
“hanrahan/talks/why.

(3]

(4] Un-

5]

P. Hanrahan and J. Lawson. A language for shading and light-
ing calculations. I'SIGGRAPH Proceeding4990.

[6] J. Karczmarczuk. Geometric modelling in functional style.
In International Latino-American Conference on Functional
Programming 1999.

[7] J.R. Lewis, M. Shields, J. Launchbury, and E. Meijer. Implicit
parameters: Dynamic scoping with static typesSymposium
on Principles of Programming Languagex)00.

E. Lindholm, M. J. Kilgard, and H. Moreton. A user-
programmable vertex engine. BIGGRAPH Proceedings
2001.

Microsoft. Microsoft DirectX 8.1 programmable vertex
shader architecturévttp://msdn.microsoft.com.

K. Proudfoot, W. R. Mark, S. Tzvetkov, and P. Hanrahan. A
real-time procedural shading system for programmable graph-
ics. InSIGGRAPH Proceeding&CM Press, 2001.

J. M. SnyderGenerative modeling for computer graphics and
CAD: symbolic shape design using interval analysisca-
demic Press Professional, Inc., 1992.

(8]

9]

(10]

[11]

[12] J. M. Snyder and J. T. Kajiya. Generative modeling: a sym-
bolic system for geometric modeling. BIGGRAPH Pro-

ceedingsACM Press, 1992.

[13] M. Spivak. Calculus on ManifoldsWestview Press, 1965.

14] S. Upstill. The RenderMan CompanionAddison-Wesley,

Reading, MA, 1989.

opportunity for functional programming, because statelessness nat-

urally fits the hardware, and because the objects of interest in com-

